Results & Media

Publications

Experimental Insights Towards Explainable and Interpretable Pedestrian Crossing Prediction (Angie Nataly MeloCarlota SalinasMiguel Angel Sotelo)

Plausible Uncertainties for Human Pose Regression (Lennart Bramlage, Cristobal Curio, Michelle Karg)

Vehicle Lane Change Prediction based on Knowledge Graph Embeddings and Bayesian Inference (M. Manzour, A. Ballardini, R. Izquierdo, M. A. Sotelo)

Enabling Cooperative Pedestrian-Vehicle Interactions using an eHMI (Markus Amann, Malte Probst, Raphael Wenzel, Thomas H. Weisswange)

Knowledge-based explainable pedestrian behavior predictor (Angie Nataly Melo, Carlota Salinas, Miguel Angel Sotelo, Luis Felipe Herrera-Quintero)

Investigating Drivers’ Awareness of Pedestrians Using Virtual Reality towards Modeling the Impact of External Factors (Vinu Vijayakumaran Nair; Markus Rehmann; Stephan de la Rosa; Cristóbal Curio)

Simulation Architecture for Driver-Pedestrian Co-simulation using Motion Capture (Maytheewat Aramrattana, Lennart Ochel)

RAG-based explainable prediction of road users behaviors for automated driving using knowledge graphs and large language models (M.A. Sotelo, Mohamed Manzour, Angie Melo, Augusto Ballardini, Carlota Salinas, Ruben Izquierdo)

Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks (Lennart Bramlage, Cristobal Curio)

Towards Explainable Pedestrian Behavior Prediction: A Neuro-Symbolic Framework for Autonomous Driving (Angie Nataly Melo, Carlota Salinas, Miguel Ángel Sotelo)

Optimal Behavior Planning for Implicit Communication using a Probabilistic Vehicle-Pedestrian Interaction Model (Markus Amann, Malte Probst, Raphael Wenzel, Thomas H. Weisswange, Miguel A. Sotelo)

Towards Incorporating Pedestrian Intention Predictions into Behavior Planning using Virtual Reality Co-Simulators (Angie Nataly Melo Castillo, Markus Amann, Carlota Salinas Maldonado, Maytheewat Aramrattana, Thomas H. Weisswange, Malte Probst, Miguel A. Sotelo)

Towards relevant human-vehicle interaction data for perceptive machine learning (Markus Rehmann, Michael Brunner, and Cristóbal Curio)